Sequence-dependent base-stacking stabilities guide tRNA folding energy landscapes.

نویسندگان

  • Rongzhong Li
  • Heming W Ge
  • Samuel S Cho
چکیده

The folding of bacterial tRNAs with disparate sequences has been observed to proceed in distinct folding mechanisms despite their structural similarity. To explore the folding landscapes of tRNA, we performed ion concentration-dependent coarse-grained TIS model MD simulations of several E. coli tRNAs to compare their thermodynamic melting profiles to the classical absorbance spectra of Crothers and co-workers. To independently validate our findings, we also performed atomistic empirical force field MD simulations of tRNAs, and we compared the base-to-base distances from coarse-grained and atomistic MD simulations to empirical base-stacking free energies. We then projected the free energies to the secondary structural elements of tRNA, and we observe distinct, parallel folding mechanisms whose differences can be inferred on the basis of their sequence-dependent base-stacking stabilities. In some cases, a premature, nonproductive folding intermediate corresponding to the Ψ hairpin loop must backtrack to the unfolded state before proceeding to the folded state. This observation suggests a possible explanation for the fast and slow phases observed in tRNA folding kinetics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capturing RNA Folding Free Energy with Coarse-Grained Molecular Dynamics Simulations

We introduce a coarse-grained RNA model for molecular dynamics simulations, RACER (RnA CoarsE-gRained). RACER achieves accurate native structure prediction for a number of RNAs (average RMSD of 2.93 Å) and the sequence-specific variation of free energy is in excellent agreement with experimentally measured stabilities (R2 = 0.93). Using RACER, we identified hydrogen-bonding (or base pairing), b...

متن کامل

RNA folding: conformational statistics, folding kinetics, and ion electrostatics.

RNA folding is a remarkably complex problem that involves ion-mediated electrostatic interaction, conformational entropy, base pairing and stacking, and noncanonical interactions. During the past decade, results from a variety of experimental and theoretical studies pointed to (a) the potential ion correlation effect in Mg2+-RNA interactions, (b) the rugged energy landscapes and multistate RNA ...

متن کامل

Assembly mechanisms of RNA pseudoknots are determined by the stabilities of constituent secondary structures.

Understanding how RNA molecules navigate their rugged folding landscapes holds the key to describing their roles in a variety of cellular functions. To dissect RNA folding at the molecular level, we performed simulations of three pseudoknots (MMTV and SRV-1 from viral genomes and the hTR pseudoknot from human telomerase) using coarse-grained models. The melting temperatures from the specific he...

متن کامل

Direct measurement of the full, sequence-dependent folding landscape of a nucleic acid.

Nucleic acid hairpins provide a powerful model system for understanding macromolecular folding, with free-energy landscapes that can be readily manipulated by changing the hairpin sequence. The full shapes of energy landscapes for the reversible folding of DNA hairpins under controlled loads exerted by an optical force clamp were obtained by deconvolution from high-resolution, single-molecule t...

متن کامل

Autonomously Folding Protein Fragments Reveal Differences in the Energy Landscapes of Homologous RNases H

An important approach to understanding how a protein sequence encodes its energy landscape is to compare proteins with different sequences that fold to the same general native structure. In this work, we compare E. coli and T. thermophilus homologs of the protein RNase H. Using protein fragments, we create equilibrium mimics of two different potential partially-folded intermediates (I(core) and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 117 42  شماره 

صفحات  -

تاریخ انتشار 2013